
Agent57: Surpassing humans on Atari games

Omkar Ranadive

Arcade Learning Environment
• Suite of 57 different games of Atari

2600 console

• Each created by an independent

party (no experimenter’s bias)

• Each game has enough variation to

claim generality

1

Are agents actually getting more intelligent?

3Image courtesy of DeepMind

Dark Blue ones = Distributed agents
Light blue ones = single actor agents

R2D2

NGU

Agent57

Distributed RL
• Key idea: Separate the acting from the

learning

• Create multiple copies of the environment

• Each copy of the environment has its own

actor

• Actors explore the environment and put

experiences in central buffer

• A learner learns from the central buffer

4Image courtesy of Google AI

Distributed RL
• Actor updates are asynchronous

• Leads to greater data collection and

better exploration

5Image courtesy of Google AI

Recurrent Replay Distributed DQN (R2D2)
• Memory is required to handle long-term dependencies

better

• R2D2 uses RNN (LSTM) to handle this

• This is done in the distributed RL setting

6

Curiosity: Problem of exploration
• Desire to learn something, seek new experiences

• Learn about things which we don’t know much about

• In RL, this is useful for exploration

• So, make an agent explore the environment better by making it

“curious”

7

Why does curiosity help?
• In RL, extrinsic rewards are usually sparse

• So, positive reinforcement happens only when we somehow

encounter these rewards - difficult task

• Humans still explore the environment using motivation/curiosity

• Similarly, curiosity as an intrinsic reward would help the agent

8

Curiosity: Formal definition
• Curiosity is the error in predicting the consequence of its own

actions
• Agent predicts the next state based on present state and action

• The intrinsic reward is then:
• Lower the probability higher the reward. So the agent gets

rewards if it predicts hard to predict states

9

The problem with curiosity

10

http://www.youtube.com/watch?v=l1FqtAHfJLI&t=112

Random Network Distillation
• Key idea: Neural networks can predict

those things better which it has already
seen

• Ex - Samples from training set are
always easier to predict

• Two networks: Randomly initialized and a
predictor network

• The predictor network tries to predict the
output of the random network

11Image courtesy of Thomas Simonini

Random Network Distillation
• Error:
• Error will be low if the state is

already seen before
• Error will be high for novel

states
• High error is indicative of a

novel state!

12Image courtesy of Thomas Simonini

Agents eventually lose curiosity
• As agent explores more, novelty of the state reduces

• Eventually, the agent will lose curiosity and only exploit

• Agent becomes purely driven by extrinsic rewards

• Agent loses the opportunity to learn more from these novel

states

• How to keep the agent motivated in a directed manner?

13

Never Give Up (NGU)
• Agent should keep exploration (never give up)

• Divide novelty into two parts -> Episodic novelty and lifelong

novelty

• Episodic novelty: Discourage agents from revisiting the same

states within an episode

• Lifelong novelty: Modulate how much the agent explores over

all episodes
14

Never Give Up: Episodic Novelty
• Keep episodic memory M

• Fill it with states as the agent explores the agent

• For each state, compare it with the states present in the

memory M to see how novel the new state is

• This is done using K-nearest neighbors

15

Never Give Up: Episodic Novelty

K(x, y) = similarity between two states; d = Euclidean distance

16

Never Give Up: Lifelong curiosity

L = 5, alpha = modulating factor, err(xt) = Random distillation error

17

Never Give Up: Architecture

18Image courtesy of Adria et al

Never Give Up: Scaling to distributed architecture
• Combined reward:

• Instead of learning Q(x, a) learn Q(x, a, Bi)

• That is, we can learn different “goals”

• In this case, a goal is the degree of exploration

• Bi = 0, leads to no exploration and Bi = 1 leads to full

exploration

19

Never Give Up: Scaling to distributed architecture
• Agents in different copies of environment will be given different

value of Bi

• So each agent explores the environment differently

• The learner learns from every agents experience

20

NGU: Problems
• Equal weightage given to all policies
• Long term credit assignment is still difficult
• To deal with long term credit, adjust the discount factor

dynamically
• Recap of discount factor:

21

Building blocks of Agent57
• Split state-value function:
• So use two neural nets -> One for extrinsic rewards, one for

intrinsic
• Easier to handle the variance in two rewards
• Adaptive exploration: Instead of Q(X, a, Bi) we learn Q(X, a, Bi,

Gi) where Bi = term to control intrinsic exploration, Gi =
discount factor to control extrinsic exploration

• Learn this using multi-arm bandits

22

Agent57: Putting everything together
• Agent57 is basically R2D2 + NGU + Metacontroller + State

Value function decomposition

• Manages to beat human performance on every single game of

the Atari2600 suite

23

