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Arcade Learning Environment
• Suite of 57 different games of Atari 

2600 console 

• Each created by an independent 

party (no experimenter’s bias) 

• Each game has enough variation to 

claim generality 
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Are agents actually getting more intelligent?
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Dark Blue ones = Distributed agents 
Light blue ones = single actor agents 

R2D2

NGU

Agent57



Distributed RL 
• Key idea: Separate the acting from the 

learning 

• Create multiple copies of the environment 

• Each copy of the environment has its own 

actor 

• Actors explore the environment and put 

experiences in central buffer 

• A learner learns from the central buffer 
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Distributed RL 
• Actor updates are asynchronous 

• Leads to greater data collection and 

better exploration  
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Recurrent Replay Distributed DQN (R2D2)
• Memory is required to handle long-term dependencies 

better 

• R2D2 uses RNN (LSTM) to handle this 

• This is done in the distributed RL setting
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Curiosity: Problem of exploration 
• Desire to learn something, seek new experiences 

• Learn about things which we don’t know much about 

• In RL, this is useful for exploration

• So, make an agent explore the environment better by making it 

“curious”  
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Why does curiosity help? 
• In RL, extrinsic rewards are usually sparse 

• So, positive reinforcement happens only when we somehow 

encounter these rewards - difficult task 

• Humans still explore the environment using motivation/curiosity 

• Similarly, curiosity as an intrinsic reward would help the agent 

8



Curiosity: Formal definition
• Curiosity is the error in predicting the consequence of its own 

actions 
• Agent predicts the next state based on present state and action 

• The intrinsic reward is then: 
• Lower the probability higher the reward. So the agent gets 

rewards if it predicts hard to predict states 
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The problem with curiosity
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http://www.youtube.com/watch?v=l1FqtAHfJLI&t=112


Random Network Distillation 
• Key idea: Neural networks can predict 

those things better which it has already 
seen 

• Ex - Samples from training set are 
always easier to predict 

• Two networks: Randomly initialized and a 
predictor network 

• The predictor network tries to predict the 
output of the random network 
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Random Network Distillation 
• Error:  
• Error will be low if the state is 

already seen before 
• Error will be high for novel 

states 
• High error is indicative of a 

novel state! 
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Agents eventually lose curiosity
• As agent explores more, novelty of the state reduces 

• Eventually, the agent will lose curiosity and only exploit 

• Agent becomes purely driven by extrinsic rewards 

• Agent loses the opportunity to learn more from these novel 

states 

• How to keep the agent motivated in a directed manner? 
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Never Give Up (NGU)
• Agent should keep exploration (never give up) 

• Divide novelty into two parts -> Episodic novelty and lifelong 

novelty 

• Episodic novelty: Discourage agents from revisiting the same 

states within an episode 

• Lifelong novelty: Modulate how much the agent explores over 

all episodes 
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Never Give Up: Episodic Novelty 
• Keep episodic memory M 

• Fill it with states as the agent explores the agent 

• For each state, compare it with the states present in the 

memory M to see how novel the new state is 

• This is done using K-nearest neighbors 
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Never Give Up: Episodic Novelty 

K(x, y) = similarity between two states; d = Euclidean distance
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Never Give Up: Lifelong curiosity 

L = 5, alpha = modulating factor, err(xt) = Random distillation error 
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Never Give Up: Architecture 
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Never Give Up: Scaling to distributed architecture
• Combined reward: 

• Instead of learning Q(x, a) learn Q(x, a, Bi) 

• That is, we can learn different “goals” 

• In this case, a goal is the degree of exploration 

• Bi = 0, leads to no exploration and Bi = 1 leads to full 

exploration 
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Never Give Up: Scaling to distributed architecture
• Agents in different copies of environment will be given different 

value of Bi 

• So each agent explores the environment differently 

• The learner learns from every agents experience 
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NGU: Problems 
• Equal weightage given to all policies 
• Long term credit assignment is still difficult 
• To deal with long term credit, adjust the discount factor 

dynamically 
• Recap of discount factor: 
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Building blocks of Agent57
• Split state-value function:
• So use two neural nets -> One for extrinsic rewards, one for 

intrinsic 
• Easier to handle the variance in two rewards 
•  Adaptive exploration: Instead of Q(X, a, Bi) we learn Q(X, a, Bi, 

Gi) where Bi = term to control intrinsic exploration, Gi = 
discount factor to control extrinsic exploration 

• Learn this using multi-arm bandits 

22



Agent57: Putting everything together 
• Agent57 is basically R2D2 + NGU + Metacontroller + State 

Value function decomposition 

• Manages to beat human performance on every single game of 

the Atari2600 suite 
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